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Abstract

Many practical vision-language applications require mod-001
els that understand negation, e.g., when using natural lan-002
guage to retrieve images which contain certain objects but003
not others. Despite advancements in vision-language mod-004
els (VLMs) through large-scale training, their ability to005
comprehend negation remains underexplored. This study006
addresses the question: how well do current VLMs under-007
stand negation? We introduce NegBench, a new bench-008
mark designed to evaluate negation understanding across009
18 task variations and 79k examples spanning image, video,010
and medical datasets. The benchmark consists of two core011
tasks designed to evaluate negation understanding in di-012
verse multimodal settings: Retrieval with Negation and013
Multiple Choice Questions with Negated Captions. Our014
evaluation reveals that modern VLMs struggle significantly015
with negation, often performing at chance level. To address016
these shortcomings, we explore a data-centric approach017
wherein we finetune CLIP models on large-scale synthetic018
datasets containing millions of negated captions. We show019
that this approach can result in a 10% increase in recall on020
negated queries and a 40% boost in accuracy on multiple-021
choice questions with negated captions.022

1. Introduction023

Joint embedding-based Vision-Language Models (VLMs),024
such as CLIP, have revolutionized how we approach multi-025
modal tasks by learning a shared embedding space where026
both images and text are mapped together. This shared027
space enables a variety of applications, including cross-028
modal retrieval, video retrieval, text-to-image generation,029
image captioning, and even medical diagnosis [2, 18, 19,030
21, 30, 32, 35, 38–40, 49]. By aligning visual and linguis-031
tic representations, these models achieve remarkable per-032
formance across domains and are able to model complex033
interactions between vision and language inputs.034

Despite these advances, there is an emerging limita-035
tion: these models fail to handle negation, which is es-036
sential in many real-world scenarios. Negation enables037

Figure 1. We present NegBench with image retrieval and multiple-
choice tasks to evaluate negation understanding. CLIP-based mod-
els frequently misinterpret negation in both tasks, but we show
how a synthetic data approach can improve performance.

precise communication by specifying what is false or ab- 038
sent [12, 16, 26, 27]. For example, a radiologist may search 039
for images showing “bilateral consolidation with no evi- 040
dence of pneumonia”, or a safety inspector might query 041
“construction sites with no barriers”. Current benchmarks 042
like CREPE and CC-Neg have introduced limited tests of 043
negation, but they rely on rigid, templated examples that 044
do not reflect the complexity of natural language queries 045
[24, 41]. As a result, they fall short in evaluating how well 046
VLMs understand negation in practical applications. 047

To comprehensively evaluate how well VLMs handle 048
negation, we design a multi-level evaluation paradigm in- 049
spired by real-world information retrieval systems, where a 050
coarse-grained retrieval step often precedes a fine-grained 051
ranking or selection step [23, 29]. 052

The first task, Retrieval-Neg, tests whether models can 053
handle real-world queries that mix affirmative and negative 054
statements, such as “a beach with no people” or “a build- 055
ing without windows.” This task challenges the model to 056
retrieve images from diverse datasets based on the presence 057
of certain elements and the absence of others, simulating 058
scenarios found in search engines, content moderation, and 059
recommendation systems. By retrieving several potentially 060
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relevant matches (e.g., top-5 retrieval), Retrieval-Neg serves061
as the coarse-grained retrieval component of our evaluation.062

The second task, MCQ-Neg, provides a fine-grained,063
structured evaluation that directly assesses specific failures064
in negation. In this task, the model must choose the cor-065
rect description of an image from several closely related066
options, where the incorrect choices are hard negatives, dif-067
fering only by what is affirmed or negated. For instance, in068
medical diagnostics, consider distinguishing between “The069
X-ray shows evidence of pneumonia but no evidence of070
pleural effusion” and “The X-ray shows evidence of pleural071
effusion but no evidence of pneumonia.” These statements072
are linguistically similar but convey opposite diagnoses, re-073
quiring the model to parse subtle yet critical differences.074

Through our evaluation pipeline, we uncover a surprising075
limitation: joint embedding-based VLMs frequently col-076
lapse affirmative and negated statements into similar em-077
beddings, treating “a dog” and “no dog” as nearly indis-078
tinguishable. This affirmation bias reveals a significant079
shortcoming that was not sufficiently addressed in previous080
benchmarks like CREPE or CC-Neg.081

Recognizing this critical gap, we then ask: If cur-082
rent models fail to understand negation, can we improve083
them? To tackle this, we propose a data-centric solution,084
introducing two large-scale synthetic datasets—Syn-Neg-085
Cap and Syn-Neg-MCQ—designed to improve negation086
comprehension. Fine-tuning CLIP-based models on these087
datasets leads to substantial improvements, including a 10%088
increase in recall on negated queries and a 40% boost in ac-089
curacy on multiple-choice questions with negated captions.090

The rest of the paper follows a challenge-diagnosis-091
solution structure. We introduce NegBench to evaluate092
negation comprehension, analyze VLMs’ affirmation bias,093
and propose a data-driven solution using synthetic negation094
examples. We will open-source all models and data to foster095
research in negation understanding and its applications.096

2. Related Work097

Our work lies within the field of evaluating and advanc-098
ing foundational vision-language models (VLMs). Joint-099
embedding models based on CLIP [31] show impressive100
generalization across visio-linguistic tasks like cross-modal101
retrieval, image captioning, and visual question answering102
[2, 18, 19, 30, 32, 35, 38–40] in diverse visual domains,103
extending beyond natural images to videos and medical im-104
ages [3, 13, 21, 22, 28, 49]. We introduce a benchmark and105
data-centric approach to rigorously evaluate and improve106
negation understanding in these VLMs.107
Negation Understanding in Language and Vision. Re-108
cent work showed that large language models perform sub-109
optimally when tasked with negation understanding [9, 45].110
We go a step further by showing that vision-language mod-111
els exhibit a more severe affirmation bias, completely fail-112

ing to differentiate affirmative from negative captions. 113
Despite this critical limitation, existing benchmarks pro- 114

vide limited assessments of negation in VLMs. CREPE [24] 115
and the concurrent work CC-Neg [41] are among the few 116
vision-language benchmarks that include negation, but they 117
focus on compositional understanding and rely on linguis- 118
tic templates that fail to reflect the varied ways negation ap- 119
pears in real user queries. In contrast, our proposed bench- 120
mark, NegBench, leverages an LLM to generate natural- 121
sounding negated captions, spanning a broader range of 122
negation types and contexts across images, videos, and 123
medical datasets. This systematic design enables a thor- 124
ough evaluation of VLMs’ ability to handle negation in mul- 125
timodal settings, uncovering unique challenges and failure 126
cases that have not been fully addressed in prior work. 127
Improving CLIP for Compositionality and Negation. 128
Recent methods have explored improving the generaliza- 129
tion abilities of CLIP-like VLMs for visio-linguistic com- 130
positionality and limited aspects of negation understand- 131
ing. For instance, NegCLIP [48] employs composition- 132
aware mining when finetuning CLIP to enhance composi- 133
tional reasoning, while ConCLIP [41] modifies the CLIP 134
loss to incorporate synthetic, template-based negation ex- 135
amples. In the medical domain, negation is a common fea- 136
ture in clinical text reports, often indicating the absence of 137
specific pathologies [44]. Specialized models like Biomed- 138
CLIP [49] and CONCH [21] have been pretrained on mil- 139
lions of biomedical image-text pairs to address a variety of 140
medical tasks, leveraging domain-specific knowledge from 141
large-scale multimodal data. NegBench provides a system- 142
atic way to evaluate general-purpose and medical VLMs. 143
Synthetic Data for Model Training. It is common to use 144
synthetic data to improve the performance of models in 145
computer vision [1, 5, 15, 47]. Recent studies have shown 146
that it is possible to use synthetic data to learn general 147
vision-language representations, with some models trained 148
entirely on synthetic images and captions achieving results 149
comparable to real data [11, 42, 43]. Our approach is similar 150
in spirit, but it constructs synthetic datasets to teach models 151
a new, complex capability—negation understanding. 152

3. The Negation Benchmark (NegBench) 153

We design NegBench as a multi-level evaluation to as- 154
sess the capacity of joint-based vision-language models 155
to understand negation across different tasks: (1) coarse- 156
grained retrieval, by accurately retrieving images that sat- 157
isfy specified inclusions and exclusions, and (2) fine- 158
grained question-answering, by selecting the correct de- 159
scription from closely related options, testing the model’s 160
detailed understanding of negation beyond simple retrieval. 161

In the Retrieval-Neg task, the model retrieves the top- 162
5 images that match both affirmative and negative criteria 163
within a query. In the MCQ-Neg task, the model selects the 164
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Figure 2. General Pipeline for Constructing NegBench. We start by extracting positive concepts from vision datasets. An LLM proposes
negative concepts, which are verified with an object detector for datasets without explicit object annotations. We use templates to generate
captions with negation, then paraphrase them by an LLM to ensure linguistic variety and robust evaluation of negation understanding.

correct description of an image from options that differ only165
in the affirmation or negation of specific elements.166

3.1. Transforming Datasets for Negation Evaluation167

General Dataset Transformation Overview. To imple-168
ment the two-stage evaluation pipeline of NegBench, we169
adapt several popular vision datasets, covering images170
(COCO [20], VOC2007 [7]), video (MSR-VTT [46]), and171
specialized medical imaging domains (CheXpert [14]). For172
each dataset, we identify positive elements {pos}, which173
represent objects or concepts present in the image, and neg-174
ative elements {neg}, which are absent from the image but175
commonly associated with the present objects. When avail-176
able, we use object-level annotations to identify these el-177
ements, as in COCO, VOC2007, and CheXpert; for other178
datasets, we derive positive and negative elements directly179
from the captions. This flexible approach allows NegBench180
to extend any vision dataset, whether it includes object-level181
annotations or captions, to evaluate negation comprehen-182
sion across diverse tasks and data modalities.183

In the Retrieval-Neg task, we modify standard cap-184
tions by including negations, evaluating how models handle185
queries that specify both present and absent elements. For186
example, captions are modified as: “There is no x in the187
image. [Original Caption].” or “[Original Caption]. There188
is no x in the image.” To introduce linguistic diversity, we189
use LLaMA 3.1 [6] to paraphrase these captions.190

For the MCQ-Neg task, we generate multiple-choice191
questions (MCQs) for each image. The model must identify192
the correct description based on three linguistic templates:193
Affirmation, Negation, and Hybrid [17].194

1. Affirmation: “This image includes A (and C).”
2. Negation: “This image does not include B.”
3. Hybrid: “This image includes A but not B.”

195

Each MCQ consists of one correct answer and three in-196
correct answers, which serve as hard negatives, misleading197
the model if it does not properly understand negation. A198

correct answer accurately describes the presence of {pos} 199
elements or negates {neg} elements. A False Affirma- 200
tion (e.g., “This image includes x” when x ∈ {neg}) or 201
a False Negation (e.g., ”This image does not include x” 202
when x ∈ {pos}) highlights the model’s failure to com- 203
prehend the image. The Hybrid template further evaluates 204
the model’s ability to combine affirmation and negation in 205
the same caption. These MCQs are also paraphrased using 206
LLaMA 3.1 to increase linguistic diversity. 207

3.2. Applicability Across Data Types and Domains 208

NegBench supports a wide range of data types and domains, 209
enabling comprehensive negation evaluation. 210

Video Understanding. Video retrieval tasks introduce tem- 211
poral complexity, where negation can involve both objects 212
and actions that vary over time. Using MSR-VTT as an ex- 213
ample, we prompt LLaMA 3.1 [6] to extract positive and 214
negative elements from each video’s caption. These ele- 215
ments may represent either objects present in the video or 216
actions taking place. For Retrieval-Neg, we create cap- 217
tions specifying both the presence of some elements and 218
the absence of others (e.g., “A person is cooking but not 219
eating”). In MCQ-Neg, we generate multiple-choice ques- 220
tions where the model must select the description that most 221
accurately represents a video segment, requiring it to reason 222
about negation of objects and actions in dynamic scenes. 223

Medical Image Interpretation with CheXpert. Accurate 224
negation understanding is critical in high-stakes domains 225
like medical imaging. Using the CheXpert dataset [14], we 226
focus on the most frequent condition Lung Opacity and de- 227
sign two binary classification tasks: 228

Task 1: Affirmation Control Task. This task evaluates the 229
model’s ability to associate images with specific medical 230
conditions using affirmative statements. 231

Question: Which option describes this image?

A) This image shows Lung Opacity.
B) This image shows Atelectasis. 232
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Task 2: Negation Understanding Task. This task tests233
whether the model can correctly interpret negation, distin-234
guishing the presence or absence of a medical condition.235

Question: Which option best describes the image?

A) This image shows Lung Opacity.
B) This image does not show Lung Opacity.236

These extensions highlight the adaptability of NegBench237
to various data types and domains, from general images and238
videos to specialized medical imaging. This versatility en-239
sures that NegBench provides rigorous, contextually rele-240
vant evaluations of negation understanding in VLMs.241

Figure 3. Performance drop in recall@5 on (a) COCO and
(b) HardNeg-Syn text-to-image retrieval with negated captions
(green stars) compared to original captions (orange circles).
All models show substantial drops in performance, with NegCLIP
experiencing the largest drop of 23.0% on HardNeg-Syn, which
features hard negatives requiring stronger negation reasoning.

3.3. Synthetic Datasets for Controlled Evaluation242

To rigorously test negation understanding, we construct243
HardNeg-Syn, a dataset that precisely controls object pres-244
ence and absence by synthesizing hard negative images.245

Motivation and Benefits of Synthetic Data. Syn-246
thetic data offers several advantages over traditional im-247
age datasets. First, by creating “hard negatives”—image248
pairs that differ only by a single object’s presence or ab-249
sence—we can evaluate the sensitivity of models to nega-250
tion with minimal confounding variables. Additionally, im-251
age datasets like COCO and VOC2007 are limited in the252
range of visual concepts they cover; COCO has 80 objects253
while VOC2007 includes only 20. To expand this diversity,254
we prompt a large language model to propose a broader255
set of objects, which we use as targets in our synthetic256

dataset. This approach enables the generation of visually 257
varied scenes that more comprehensively test negation com- 258
prehension across a wider array of objects and contexts. 259

Construction Process for the HardNeg-Syn Evaluation 260
Dataset. We create 10,000 image pairs using Stable Dif- 261
fusion [34], where each pair includes one image contain- 262
ing a target object and another where it is explicitly absent. 263
To ensure accurate object presence or absence, we use the 264
open-vocabulary object detector OWL-ViT [25]. 265

4. NegBench Evaluations: Results and Insights 266

In this section, we benchmark the negation abilities of dif- 267
ferent VLMs using NegBench, comparing models based 268
on their architecture, training data, and training objectives 269
to reveal specific areas where negation understanding re- 270
mains limited. Specifically, we evaluate five CLIP ViT-B/32 271
models on Retrieval-Neg and MCQ-Neg tasks. These in- 272
clude OpenAI CLIP [31], CLIP-laion400m [37], and CLIP- 273
datacomp [8], which differ by pretraining dataset, as well 274
as NegCLIP [48], trained to improve compositional lan- 275
guage understanding, and ConCLIP [41], trained specif- 276
ically to improve negation understanding. To handle the 277
video dataset, MSR-VTT, we follow [3] and encode 4 uni- 278
formly sampled frames per video, averaging their features 279
to obtain the CLIP video embedding. For medical tasks, we 280
evaluate CONCH [21] and BioMedCLIP [49], two medical 281
foundation VLMs. We also assess the impact of scaling up 282
CLIP-laion400m (ViT-B, ViT-L, and ViT-H) to determine if 283
model size improves negation understanding. 284

CLIP models struggle with negated queries in retrieval 285
tasks. We evaluate five CLIP-based models on the origi- 286
nal COCO text-to-image retrieval task and its Retrieval-Neg 287
version, where captions include negated statements. Across 288
models, performance drops significantly on the negated 289
task. In COCO retrieval (Figure 3a), CLIP-laion400m expe- 290
riences a 7.7% drop in recall@5, with CLIP-datacomp and 291
CLIP showing drops of 7.6% and 6.8%, respectively. In the 292
more challenging HardNeg-Syn retrieval task (Figure 3b), 293
the performance drops are even more pronounced due to the 294
presence of hard negatives, i.e. images that closely resemble 295
positive examples but differ by the exclusion of a single ob- 296
ject. Here, NegCLIP, despite its promise for compositional 297
understanding, suffers a 23.0% drop, while ConCLIP, de- 298
signed specifically for negation understanding, still declines 299
by 18.0%. These results suggest that interpreting negation, 300
particularly in the presence of hard negatives, remains a key 301
challenge for retrieval tasks. 302

MCQ-Neg reveals severe limitations in CLIP models. 303
Figure 4a shows that most models perform worse than ran- 304
dom guessing (indicated by the red dashed line at 25%) on 305
the MCQ-Neg task, with CLIP-base achieving only 15% on 306
COCO and 8% on VOC2007. These results reveal a fun- 307
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Figure 4. MCQ-Neg performance for (a) baseline CLIP models, (b) larger model sizes, and (c) medical VLMs. (a) CLIP-based
models mostly perform worse than random guessing (shown as a red dashed line) on most datasets. (b) Scaling up CLIP models does not
significantly improve negation understanding. (c) Medical VLMs experience a significant drop in performance on negation MCQs.

damental limitation of CLIP’s pretraining objective, which308
encourages strong associations between visual concepts and309
specific words, but struggles to interpret negation. Notably,310
CLIP-laion400m performs better, reaching over 40% accu-311
racy on the HardNeg-Syn dataset. This improvement likely312
stems from the fact that both CLIP-laion400m and Stable313
Diffusion (used to generate the HardNeg-Syn dataset) were314
trained on the LAION dataset [36]. However, a score of315
40% on a 4-way multiple-choice task is still far below an316
acceptable level, demonstrating that even under this setup,317
models exhibit a serious lack of negation understanding.318

Scaling CLIP does not address the negation problem.319
As shown in Figure 4b, scaling up the model size from320
ViT-B/32 (86M parameters) to ViT-L/14 (307M parame-321
ters) and ViT-H/14 (632M parameters) does not qualita-322
tively improve negation understanding. While ViT-H/14323
performs slightly better on COCO and VOC2007, it un-324
derperforms on HardNeg-Syn and MSR-VTT compared to325
ViT-B/32. These results suggest that increasing model size326
alone is not an effective strategy for addressing the funda-327
mental issues with negation understanding.328

Critical failures in high-stakes medical tasks. Figure 4c329
presents the results for the CheXpert MCQ-Neg task, where330
BioMedCLIP and CONCH exhibit substantial performance331
drops of 24.6% and 33.2%, respectively, when negation is332
introduced. This result is especially concerning in the con-333
text of medical diagnostics, where accurate interpretation of334
negation (e.g., the presence or absence of a condition such335
as Lung Opacity) is essential for correct diagnoses and fa-336
vorable patient outcomes.337

4.1. Why Do VLMs Not Understand Negation?338

The results from NegBench reveal that CLIP VLMs strug-339
gle with different forms of negation understanding, moti-340
vating a deeper analysis into the underlying causes of these341
failures. In this section, we examine model performance342
across different MCQ types and analyze the embedding343
spaces of various models to uncover specific shortcut strate-344
gies that limit their negation comprehension.345

Model performance varies widely across MCQ types. 346
To understand why models perform below random chance, 347
we categorize the MCQs into three types based on the 348
correct answer template: Affirmation, Negation, and Hy- 349
brid. Figure 5 compares model accuracy across these MCQ 350
types, with evaluations conducted in two settings: one us- 351
ing LLaMA 3.1 to paraphrase answer choices into natural- 352
sounding sentences, and another using rigid linguistic tem- 353
plates. All models perform poorly on Negation MCQs, re- 354
flecting a general struggle with negation understanding. 355

Most models tend to select Negation sentences regard- 356
less of whether answers are templated or LLM-paraphrased, 357
as seen in the selection frequencies visualized in the ap- 358
pendix. This behavior likely arises from task design, where 359
67% of MCQs (Negation and Hybrid) lack a correct affir- 360
mative option, leading models to default to “This image 361
does not include {pos}.” These results suggest that mod- 362
els trained with CLIP-like objectives often adopt shortcut 363
strategies that ignore specific words like “no.” 364

The template-based results reveal more biases in model 365
behavior. For instance, ConCLIP outperforms on Hybrid 366
MCQs, achieving the highest accuracy, but fails entirely 367
on Affirmation MCQs, scoring 0% on both image datasets. 368
This bias is particularly prominent in the rigid template 369
structure, where ConCLIP is skewed towards constructs like 370
“This image includes X but not Y.” In fact, as we will show 371
next, ConCLIP maps all templated Hybrid captions to the 372
same location in its embedding space. 373

Embedding analysis reveals VLM shortcut strategies. 374
To investigate potential shortcut strategies, we analyze the 375
embedding spaces of various models using 24 Affirmative 376
(“X”) and 24 Negated (“Not X”) templates to create 48 cap- 377
tions per object. We apply PCA to the resulting embeddings 378
(Figure 6a). The templates are detailed in the appendix. 379

We observe varying behaviors across models. The over- 380
lapping embeddings for affirmative and negated captions in 381
CLIP and NegCLIP suggest that these models do not dis- 382
tinguish between positive and negative statements, possi- 383
bly due to a “bag-of-words” shortcut strategy [10, 48] that 384
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Figure 5. Performance by MCQ type (Affirmation, Negation, Hybrid) across (a) template-based and (b) LLM-paraphrased answer
choices. VLMs show significant biases towards specific templates (e.g. ConCLIP with Hybrid). Template selection frequency (analyzed in
the appendix) confirms that CLIP defaults to Negation answers, especially when a positive object is incorrectly negated.

(a) PCA embeddings for affirmative (dots) and negated (triangles) captions.

(b) PCA embeddings for hybrid captions (diamonds) and cases where two objects are negated (stars) or affirmed (squares).

Figure 6. PCA Projections of Caption Embeddings Across Models. CLIP and NegCLIP lack separation between affirmative and negated
captions. ConCLIP treats all negated captions as identical, regardless of the object type, while the Sentence Transformer shows more ideal
separability along both ’object type’ and ’negation’ dimensions.

overlooks negation words. This explains why both models385
incorrectly select the Negation template, which negates pos-386
itive objects, in Figure 5. CoNCLIP separates positive and387
negative captions but fails to distinguish between negative388

captions of different objects, collapsing all negative caption 389
embeddings toward a single point (red circle). 390

We include the embeddings of a text-only Sentence 391
Transformer [33] as a reference that effectively differenti- 392
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ates affirmative and negated captions along distinct “object393
type” and “negation” axes, exemplifying ideal separation.394

Hybrid captions reveal more evidence of collapsed em-395
beddings. Figure 6b extends the previous analysis to hy-396
brid captions that combine affirmations and negations. It397
provides further evidence that ConCLIP employs a shortcut398
strategy for embedding linguistic negation, with hybrid and399
negated captions collapsing towards a single point (green400
circle), indicating significant compression along the nega-401
tion axis. While CLIP and NegCLIP struggle to distinguish402
affirmative from negative statements, NegCLIP shows bet-403
ter separation for hybrid captions, which appear collapsed404
in the CLIP embedding space. This suggests that Neg-405
CLIP’s poor performance on Hybrid MCQs might be due to406
a misalignment between the text and image encoders, rather407
than an inability to understand hybrid sentence structure. In408
contrast, the Sentence Transformer effectively distinguishes409
between different caption types and provides semantically410
guided representations. For example, it aligns “flowers but411
not cats” along the line connecting “flowers” and “not cats.”412

5. A Data-Centric Approach for Improving413

Negation Understanding414

We hypothesize that the tendency of CLIP-based models to415
rely on linguistic shortcuts, which hinders their negation un-416
derstanding as explored in Section 4.1, stems from training417
data limitations. In CLIP, training data lacks examples with418
explicit negation, leaving it unable to distinguish negated419
and affirmed concepts. In contrast, ConCLIP’s training data420
overfits to a single hybrid linguistic template, limiting its421
ability to generalize across varied negation structures. Next,422
we explore data-centric strategies to address these gaps, in-423
troducing a dataset that includes diverse negation examples424
spanning a range of linguistic styles.425

5.1. Synthesizing a Fine-Tuning Negation Dataset426

We augment the CC12M dataset [4], which contains ap-427
proximately 10 million image-text pairs, to generate two428
synthetic datasets with negation: CC12M-NegCap and429
CC12M-NegMCQ. Our goal is to expose models to a wide430
variety of negation scenarios and improve their ability to en-431
code negated statements. The process follows these steps:432

1. Object Extraction: Using LLaMA 3.1 [6], we extract433
positive objects (those mentioned in the caption) and434
negative objects (contextually relevant but not present)435
from each image-caption pair in CC12M.436

2. Visual Verification: An open-vocabulary object detec-437
tor [25] verifies the presence of positive objects and en-438
sures the absence of the negative objects in the image.439
This step is crucial to avoid introducing incorrect nega-440
tions that could confuse the model.441

3. Caption Generation: For each image, we generate mul-442

tiple new captions that incorporate negated objects into 443
the original captions. LLaMA 3.1 is used to ensure the 444
generated captions are natural-sounding and reflect real- 445
istic negation scenarios found in retrieval queries. 446

We construct two variants of the synthetic dataset. 447
CC12M-NegCap includes three captions per image with 448
incorporated negated objects, totaling approximately 30 449
million captions. CC12M-NegMCQ includes four cap- 450
tions per image: one correct and three hard negatives based 451
on object annotations, offering stronger training signals 452
for fine-grained negation understanding and resulting in 453
around 40 million captions. To balance broad retrieval with 454
fine-grained negation capabilities, we introduce CC12M- 455
NegFull, a comprehensive dataset that combines CC12M- 456
NegCap and CC12M-NegMCQ. We will release the ex- 457
tracted object annotations for each image in CC12M, along 458
with the corresponding URLs, and all the generated cap- 459
tions in CC12M-NegFull. This will help the community 460
build on our dataset and advance research in negation un- 461
derstanding and multimodal retrieval. 462

5.2. Fine-Tuning with Negation-Enriched Data 463

Standard CLIP Objective on CC12M-NegCap. Let 464
Bcap = {(Ii, Ti)}Ni=1 represent a batch of N image-caption 465
pairs from CC12M-NegCap, where each image Ii is paired 466
with a caption Ti that describes present and absent objects 467
in the image. For each batch Bcap, we compute a similar- 468
ity matrix S ∈ RN×N , where each element Sj,k represents 469
the cosine similarity between the j-th image and the k-th 470
caption. The CLIP objective applies a symmetric cross- 471
entropy loss over this matrix, encouraging high similarity 472
for correct image-caption pairs and low similarity for incor- 473
rect pairs. This loss is denoted as LCLIP(Bcap) and provides 474
the model with diverse negation examples in a contrastive 475
learning setup. 476

Multiple-Choice Objective on CC12M-NegMCQ. 477

Let Bmcq = {(Ii, {Ti,1, . . . , Ti,C})}Mi=1 be a batch of M 478
examples from CC12M-NegMCQ, where each image Ii is 479
paired with C captions {Ti,j}Cj=1. One caption correctly 480
describes the image, while the others serve as hard nega- 481
tives. For our experiments, we set C = 4. To fine-tune 482
on CC12M-NegMCQ, we compute the cosine similarity be- 483
tween each image and its four caption options, generating a 484
set of logits for each image-option pair. 485

The multiple-choice loss LMCQ(Bmcq) is then computed 486
by applying a cross-entropy loss over the logits, with the 487
correct answer index as the target. This loss encourages the 488
model to assign higher similarity to the correct caption and 489
lower similarity to the hard negative captions: 490

LMCQ(Bmcq) = − 1

M

M∑
i=1

log
exp(logitsi,ci)∑C
j=1 exp(logitsi,j)

, (1) 491
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where ci indicates the index of the correct caption de-492
scribing the i-th image.493

Combined Training Objective. The final objective com-494
bines the contrastive loss on CC12M-NegCap with the495
MCQ loss on CC12M-NegMCQ, weighted by α to balance496
their contributions. The total loss for one batch is:497

LTotal = αLCLIP(Bcap) + (1− α)LMCQ(Bmcq). (2)498

Evaluation Protocol. To assess the impact of our data-499
centric approach, we fine-tune two pretrained models500
(OpenAI CLIP and NegCLIP) on CC12M-NegCap us-501
ing the contrastive loss LCLIP. Additionally, we fine-502
tune both models on the combined CC12M-NegCap and503
CC12M-NegMCQ datasets using LTotal in Equation (2).504
For comparison, we fine-tune these models on the origi-505
nal CC12M dataset to isolate the effect of our negation-506
enriched datasets. Our goal is to demonstrate that CLIP507
models can significantly improve their understanding of508
negation with the right data.509

We evaluate the models on two tasks: (i) text-to-image510
and text-to-video retrieval on COCO and MSR-VTT, both511
with and without negated queries, and (ii) image-to-text and512
video-to-text MCQ tasks, where models select the correct513
caption from four options. The results are shown in Table 1.514

Results. Fine-tuning CLIP and NegCLIP on CC12M-515
NegCap leads to significant improvements in handling516
negated queries in retrieval. On COCO, CLIP’s R-Neg@5517
score increases by 10%, while the gap between R@5 and518
R-Neg@5 narrows from 6.8% to 0.7%, indicating that the519
finetuned model performs nearly as well on negated queries520
as on standard ones. A similar pattern is seen in MSR-VTT.521

However, fine-tuning on CC12M-NegCap alone does not522
improve performance on the MCQ task, suggesting that the523
contrastive objective is insufficient for learning fine-grained524
negation understanding. To address this, we fine-tune CLIP525
and NegCLIP on the combined CC12M-NegFull dataset526
using Equation (2), yielding substantial improvements on527
MCQ tasks. On COCO-MCQ, for instance, NegCLIP’s ac-528
curacy rises from 10.2% to 51.0%, a 40.8% increase.529

Ablation: Effect of varying α. The table below shows the530
impact of varying the weight factor α in the combined loss531
LTotal = αLCLIP + (1 − α)LMCQ when fine-tuning CLIP532
on CC12M-NegFull. As α increases, more weight is placed533
on the original CLIP contrastive objective, while a lower α534
emphasizes the MCQ loss. Properly tuning α is important to535
balance between fine-grained MCQ and standard retrieval.536

α 0 0.5 0.9 0.99 1

COCO Recall@5 (%) 33.9 37.3 47.6 54.2 58.5
COCO MCQ Acc (%) 61.0 54.7 50.5 46.9 14.7

537

538

Model Fine-tune data R@5 (↑) R-Neg@5 (↑) MCQ (↑)

CLIP

None 54.8 48.0 16.3
CC12M 58.8 54.5 11.2 (↓5.1)

CC12M-NegCap 58.5 57.8 14.7 (↓1.6)
CC12M-NegFull 54.2 51.9 46.9 (↑30.6)

NegCLIP

None 68.7 64.4 10.2
CC12M 70.2 66.0 10.6 (↑0.4)

CC12M-NegCap 68.6 67.5 12.5 (↑2.3)
CC12M-NegFull 69.0 67.0 51.0 (↑40.8)

(a) COCO Evaluation

Model Fine-tune data R@5 (↑) R-Neg@5 (↑) MCQ (↑)

CLIP

None 50.6 45.8 20.1
CC12M 53.7 49.9 16.9 (↓3.2)

CC12M-NegCap 54.1 53.5 20.1 (0.0)
CC12M-NegFull 46.9 43.9 35.6 (↑15.5)

NegCLIP

None 53.7 51.0 15.3
CC12M 56.4 52.6 16.8 (↑1.5)

CC12M-NegCap 56.5 54.6 18.9 (↑3.6)
CC12M-NegFull 54 51.5 36.6 (↑21.3)

(b) MSR-VTT Evaluation

Table 1. Comparison of fine-tuning datasets on performance
metrics across COCO and MSR-VTT, fine-tuned on respective
datasets and evaluated on retrieval and MCQs. Differences in
MCQ accuracy from the baseline are shown, with increases of +1
or more highlighted. Fine-tuning on negation-enriched data sig-
nificantly improves negation understanding (R-Neg and MCQ).

6. Discussion and Conclusions 539

Implications. Our findings point to two broader impli- 540
cations for enhancing language understanding in VLMs. 541
From a data perspective, pretraining datasets should include 542
a diverse array of language constructs, especially those in- 543
volving nuanced expressions like negation or complex syn- 544
tactic structures, to help models capture the subtleties of hu- 545
man language. Currently, many VLMs are pretrained on 546
datasets that primarily consist of straightforward, affirma- 547
tive statements, which might limit the models’ ability to 548
understand more subtle language elements. From a learn- 549
ing perspective, our results suggest that contrastive learn- 550
ing alone may not be sufficient for fine-grained language 551
distinctions. We experimented with different values of α 552
in Equation (2), which revealed a tradeoff in performance: 553
higher values improved coarse-grained retrieval but dimin- 554
ished performance on fine-grained multiple-choice ques- 555
tions. This suggests that alternative or supplementary train- 556
ing objectives beyond contrastive learning could enhance 557
models’ sensitivity to nuanced language, enabling more ro- 558
bust applications in real-world settings where precise lan- 559
guage interpretation is essential. 560
Summary. This paper introduces NegBench to systemati- 561
cally evaluate negation understanding in VLMs. Our find- 562
ings reveal that CLIP-based models exhibit a strong affirma- 563
tion bias, limiting their application in scenarios where nega- 564
tion is critical, such as medical diagnostics and safety moni- 565
toring. Through synthetic negation data, we offer a promis- 566
ing path toward more reliable models. While our synthetic 567
data approach improves negation understanding, challenges 568
remain, particularly with fine-grained negation differences. 569
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